

1	Product overview and technical informationsMINIRAIL – a range of high-precision products.2MINIRAIL – overview accuracy classes:.3MINIRAIL – overview preload categories.3MINIRAIL – carriage replacement warranty.3
2	MINIRAIL — Technical highlightsAccelerations4Lubrication.4Ball retention.5Protection against pollution.5Materials.6Vacuum capacity.6Packaging.6Smoothness and displacement force.7Clamping element for safety purposes.7
3	Technical Data Accuracy classes. 8 Running accuracy 8 Preload classes V0, V1 8 Rail lengths 9 Tolerances for rail lengths and fixing holes 9 Lubrication 10 Lubrication with grease 10 Lubrication with oil. 10 Re-lubrication 10 Permissible speeds and accelerations 11 Permissible operating temperatures 11 Materials 11 Dimension table, loading capacities 12/13 Accessories and options 14 Plastic plugs 14 Multi-part rails (ZG) 14
4	Sizing and installation guidelinesDynamic loading capacity C15Tightening torques for rails and carriages16Configuration of the lateral location sides17Configuration of assembly surfaces17Geometrical and position accuracy of the support surfaces18Parallelism tolerances of the locating surfaces19Mounting instructions19As delivered condition19Transportation and intermediate storage19
5	Ordering information MINIRAIL

Table of Contents

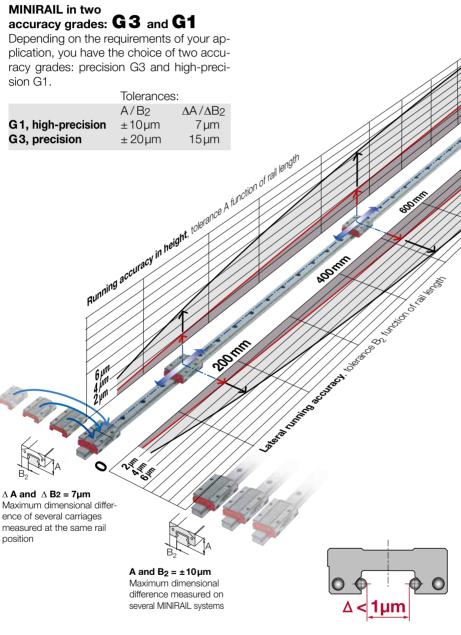
Product overview and technical informations

MINIRAIL - a range of high-precision guideways

MINIRAIL represents the latest generation of miniature guideways for sophisticated applications. They are extremely robust, and their smooth running, precision, and reliability are demonstrated in every application.

The design, material selection, and surface finish of the recirculation element and ball entry zone guarantee low pulsation and therefore a smooth ride.

Rail Length L₃


Our manufacturing know-how supports high-precision manufacturing of rails up to 1000 mm in length, which can be offered in graded lengths.

The **range** includes eight rail widths. The following carriage sizes are available to select from:

Standard, short	MNNS 7	MNNS 9	MNNS 12	MNNS 15
Standard	MNN 7	MNN 9	MNN 12	MNN 15
Standard, long	MNNL 7	MNNL 9	MNNL 12	MNNL 15
Standard, x-long	MNNXL 7	MNNXL 9	MNNXL 12	MNNXL 15
Wide	MNN 14	MNN 18	MNN 24	MNN 42
Wide, long	MNNL 14	MNNL 18	MNNL 24	MNNL 42

μm - accuracy

Our manufacturing control of this precise dimension is decisive for the complete interchangeability of the carriages.

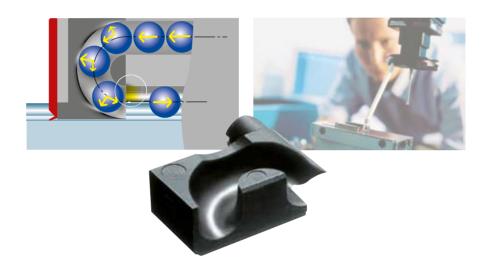
MINIRAIL in

two preload categories: **VO** and **V1**

The pre-tension influences the rigidity, displacement resistance and service lifetime. With two different pre-tensioning categories, the MINIRAIL is suitable for your application.

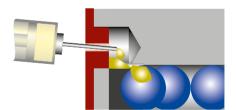
V0 corresponds to a light preload of up to 0.01 C and is available for the accuracy category G3 (C = Dynamic load).

V1 corresponds to the preload 0 to 0.03 C and is available for both accuracy categories.


MINIRAIL

Carriage interchangeability guarantee

The carriages are manufactured with high precision and are completely interchangeable. This makes a high degree of flexibility with respect to operations planning, stocking and assembly. As a result of the interchangeability, additional carriages can be installed onto an existing rail.



The recirculation element plays a crucial role in withstanding the constantly increasing acceleration values. For this reason, SCHNEEBERGER uses a plastic material that is capable of enduring very high loads The ingenious shape and the smooth surfaces of the recirculation element are designed with high levels of centrifugal force in mind.

Direct lubrication

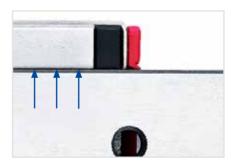
Two lubrification bores in each front plates allow the direct lubrication on the ball recirculation system.

Ball retention device for easy handling

If a carriage is removed from the rail or is being prepared for installation, the balls are always retained in the carriage by a special ball retaining device. This makes handling significantly easier and is prerequisite for quickly changing the carriages.

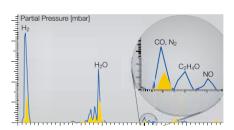
Protection against dirt

To obtain quietness and extended life, rail and carriage assemblies require clean running surfaces - even under unfavorable conditions. Therefore our MINIRAIL carriages are equipped with rail-wiping, contoured front plates.


Should the protective - and wiping function of the front plates not be required, the front plates can be removed easily. As a result, the displacement resistance is reduced significantly.

Plastic plugs in the rail mounting holes prevent the accumulation of any dirt.

Tight clearances between the carriage and rail prevent dirt penetration.


High-grade materials

All rails and carriages are manufactured from corrosion-resistant, through-hardened steel and are suitable for utilization in the most diverse applications.

Vacuum capacity

MINIRAIL can be operated in high vacuum without any wiper (max. 10⁻⁷ mbar).

Protective packaging

Carriages and rails are packed carefully and ready for installation. In the process MINI-RAIL carriages are shipped on a protective rail, in order to prevent any impairment by dirt or debris.

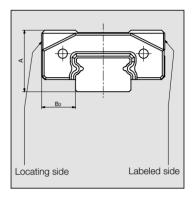
High smoothness and low displacement force

The precise fine grinding of the ball entry position on the running track is crucial to the operational quietness and service life, especially in the case of carriages with preload. Here we have indeed produced our best work.

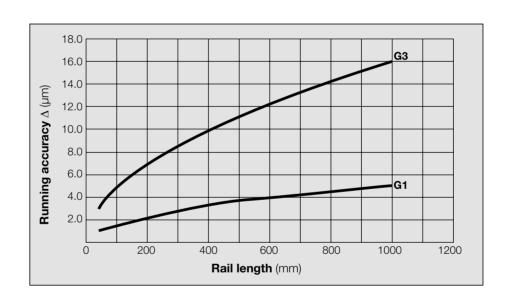
Clamping element for safety purposes

The clamping element has been developed especially for MINIRAIL. In normal operation, the clamping element is maintained in an open position by compressed air, and in the case of an electric power failure, the spring-force blocks all movement for operational safety.

www.zimmer-gmbh.de



Accuracy classes


The MINIRAIL guideways are available in two accuracy classes.

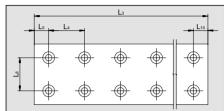
Accuracy class	Tolerances ¹ A and B ₂	2 Δ A and Δ B $_{2}$
G1	± 10 µm	7 μm
G3	± 20 µm	15 μm
1 Measuri	ng referring to the	e center of the
carriage		

Dimension differences between two or more carriages measured at the middle of each carriage (mean value of both supports) and at the same rail position

Running accuracy

Preload classes V0 and V1

Preloading increases the rigidity of the guideway but also affects operational life and increases translation resistance. The MINIRAIL system is available in two preload classes to address specific application requirements. The rail up to determines the preload classes.


Preload class	Preload	Accuracy class	
V0	near clearance to 0.01 · C	G3	
V1	0 to 0.03 · C	G1, G3	

C = Dynamic loading capacity (see page 13)

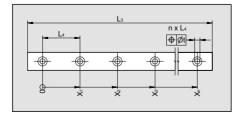
Rail lengths

Standard rail lengths L ₃ (length in mm)									
Size	L_4	L ₅ , L ₁₀	L ₈	L ₃	Max L ₃				
7	15	5	_	40, 55, 70, 85,	1000				
9	20	7.5	-	55, 75, 95, 115,	995				
12	25	10	-	70, 95, 120, 145,	995				
15	40	15	-	70, 110, 150, 190,	990				
14	30	10	-	80, 110, 140, 170,	980				
18	30	10	-	80, 110, 140, 170,	980				
24	40	15	_	110, 150, 190, 230,	990				
42	40	15	23	110. 150. 190, 230,	990				

Custom rail lengths

Other rail lengths are available up to the maximum rail lengths above and are calculated according to the following formula:

$$L_3 = (n-1) \cdot L_4 + L_5 + L_{10}$$
 $n = number of fixing holes$


The following minimum and maximum values should be maintained for the starting hole pitch $L_{\rm 5}$ and the end hole pitch $L_{\rm 10}$.

Minimum and maximum starting and end hole pitch L_5 , L_{10} (lengths in mm)										
Size	7	9	12	15	14	18	24	42		
L ₅ , L ₁₀ minimum L ₅ , L ₁₀ maximum	4 11	5 15	5 20	5 35	5 25	5 25	6 34	6 34		

Tolerances for rail lengths and fixing holes

The position tolerance of the attaching holes and the length tolerance is:

Rail	L ₃ , X _n ≤ 300 mm	L ₃ , X _n > 300 mm
t (mm)	0.3	0.001 · X _n
L ₃	±0.3	±0.001 · L ₃

Lubrication

The front plates include two lubrication holes to allow independent lubrication for the right and left side of the carriage. This ensures that all tracks of the carriageare provided with lubricant, in all installation orientations.

At delivery the carriages are slightly oiled. Prior to operation the carriages must be lubricated! Subsequent lubrication depends upon environmental conditions as well as the nature and type of the load. Guarantees regarding subsequent lubrication intervals can only be provided through the user's own tests and experience. In all cases, the recommendations provided by the lubricant manufacturer must be followed.

For lubrication with oil, SCHNEEBERGER recommends mineral oil CLP (DIN 51517) or HLP (DIN 51524) in the viscosity range of ISO VG32 to ISO VG150 in accordance with DIN 51519.

For lubrication with grease, SCHNEEBERGER recommends grease KP2K or KP1K in accordance with DIN 51825.

A re-lubrication set with an appropriate oil can be ordered at SCHNEEBERGER with the ordering code MNW.

Lubrication with grease

During the lubrication the carriages have to be moved on the rail in order to distribute the lubricant.

Quantity	Quantity of grease in cm ³								
MNNS 7	MNNS 9	MNNS 12	MNNS 15						
0.03	0.05	0.09	0.16						
MNN 7 0.04	MNN 9 0.09	MNN12 0.15	MNN 15 0.25	MNN 14 0.05	MNN 18 0.11	MNN 24 0.20	MNN 42 0.33		
MNNL 7	MNNL 9	MNNL 12	MNNL 15	MNNL 14	MNNL 18	MNNL 24	MNNL 42		
0.05	0.11	0.20	0.35	0.07	0.14	0.26	0.45		
MNNXL 7	MNNXL 9	MNNXL12	MNNXL 15	5					
0.07	0.14	0.26	0.45						

Lubrication with oil

During the lubrication the carriages have to be moved on the rail in order to distribute the lubricant.

Re-lubrication

Guideline values based on the following assumption:

- Load ratio C/P* = 10
- Speed of 1 m/s
- Stroke of 150 mm

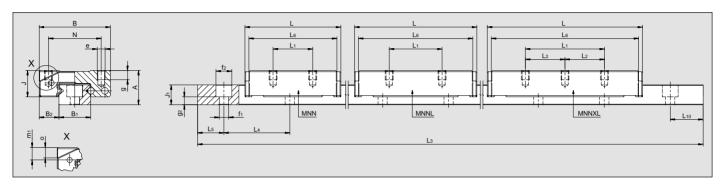
Re-lubrication interval = 3000 km

*C = dynamic loading capacity / P = equivalent force

Permissible speeds and accelerations

General applications under normal operating conditions:

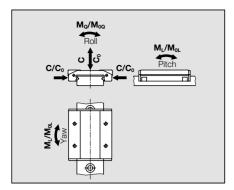
Speeds up to	5 m/s
Accelerations up to	300 m/s ²


Permissible operating temperatures

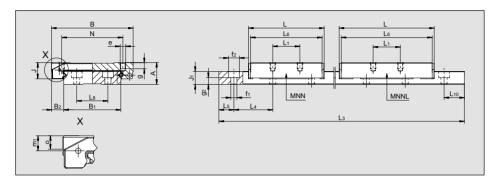
MINIRAIL guideways can be used at operating temperatures between -40°C and +80°C. Short term temperatures up to +120°C are permissible.

Materials

All steel parts are made from through hardened stainless steel. Plastic components are injection-molded using POM and TPE.

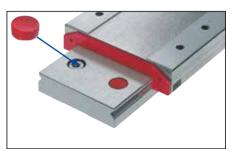

Types: 7, 9, 12,15, 14, 18, 24

Dimension table, loading capacities


	Туре										Dim	ensior	ns (mn	า)											
Rail	Carriage	А	В	B ₁	B ₂	J	J ₁	L	L ₁	L ₂	L ₄	L ₅ /L ₁₀	L ₆	L ₈	N	е	f ₁	f ₂	g	92	m ₁	0			
	MNNS 7							18.6	-	-			16.1												
MN 7	MNN 7	8	17	7	5	6.5	4.5	24.6	8	-	15	5	22.1	_	12	M2	2.4	4.2	2.5	2.2	3.1	2.5			
IVII 7	MNNL 7	U	17	' /	'		0.5	4.5	32.1	13	-	15	29	29.6	_	12	IVIZ	2.4	4.2	2.0	2.2	0.1	2.0		
	MNNXL 7							41.1	20	10			38.6												
	MNNS 9							22	-	-			19												
MN 9	MNN 9	10	20	9	5.5	8	5.5	32	10	-	20	7.5	29	_	15	M3	3.5	6	3	2	3.8	3.1			
IVII 9	MNNL 9	10	20	9	0.0		0.0	40	16	-	20	7.5	37		15	IVIO	0.0				3.0	0.1			
	MNNXL 9							50	26	13			47												
	MNNS 12									23.9	-	-			20.9										
MN 12	MNN 12	13	27	12	7.5	10	7.5	36.4	15	-	25	10	33.4	_	20	M3	3.5	6	3.5	3	4.75	3.9	l		
14114 12	MNNL 12	10	21	'-				46.4	20	-		10	43.4		20	IVIO			0.0			0.0	l		
	MNNXL 12							58.9	30	15		1	55.9												
	MNNS 15							31.7	-	-			28.7												
MN 15	MNN 15		16	32	32 15	8.5	12	2 9.5	43.7	20	-	40	15	40.7	_	- 25	25 M3	3.5	6	4	5	5.55	40		
IVIIV 13	MNNL 15	10	02	13	0.5	12	9.5	58.7	25	-	7 40	0 13	55.7		20	o IVIO	3.5	Ь	4	5	5.55	4.9			
	MNNXL 15							73.7	40	20			70.7												
MN 14	MNN 14	9	25	14	5.5	6.8	5.2	32.1	10	-	30	10	29.6		19	M3	3.5	6	2.8	2	3.3	2.2			
IVIIV 14	MNNL 14	3	20	14	0.0	0.0	0.2	41.1	19	-	00	10	38.6		13	IVIO	0.0	Ů	2.0		0.0	۷.۷			
MN 18	MNN 18	12	30	18	6	8.5	7	40	12	-	30	10	37	_	21	M3	3.5	6	3	2.5	4.3	3.1			
IVIIV 10	MNNL 18	12	30	10		0.5		50	24	-	30	10	47			IVIO	0.0	U		2.0	4.0	0.1			
MN 24	MNN 24	14	40	24	8	10	8.5	46.4	15	-	40	15	43.4		28	M3	4.5	8	3.5	4	4.75	3.9			
IVIIN 24	MNNL 24	14	40	24	0	10	0.5	58.9	28	-	40	40 15	55.9		20	IVIO	4.0	0	0.0	4	4.73	ა.ჟ			
MN 42	MNN 42	16	60	42	9	12	9.5	55.7	20	-	40	15	52.7	23	45	M4	4.5	8	4.5	5	5.5	4.9			
14114 42	MNNL 42	10	00	42	9	12	9.5	73.7	35	-	40	10	70.7	20	40	1014	4.0	0	4.5	3	0.0	4.9			

Loading capacities are calculated values, based on DIN 636-2 $C_0=$ static loading capacity C= dynamic loading capacity (100 km) $M_0=$ static moment M= dynamic moment (100 km)

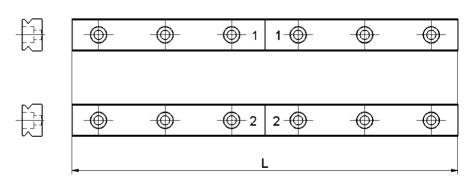
Type: 42



Looding	capacities		Mon	Weights						
Loading	capacities		IVIOI	ments		Carriage	Rail			
Co (N)	C (N)	M _{oq} (Nm)	M _{oL} (Nm)	M _Q (Nm)	M _∟ (Nm)	(g)	(g/m)			
935	645	3.4	1.6	2.3	1.1	9				
1560	925	5.6	4.3	3.3	2.5	13	216			
2340	1230	8.4	9.3	4.4	4.9	18	210			
3275	1550	11.8	17.4	5.6	8.2	23				
1385	1040	6.5	2.8	2.8	4.8	16				
2770	1690	12.9	10.2	7.9	6.2	24	309			
3880	2140	18.1	19.4	9.9	10.7	31	309			
5270	2645	24.5	34.5	12.3	17.3	40				
1735	1420	10.6	3.6	8.7	3	29				
3900	2510	23.8	16.3	15.3	10.4	47	598			
5630	3240	34.4	32.9	19.8	18.9	63	596			
7800	4070	47.6	61.1	24.8	31.9	81				
3120	2435	23.7	9.4	18.5	7.3	56				
5620	3680	42.7	28.1	27.9	18.4	81	000			
8740	5000	66.4	65.5	38.1	37.6	114	996			
11855	6200	90.1	116.5	47.1	60.9	146				
2340	1230	16.6	9.3	8.7	4.9	25	518			
3275	1550	23.3	17.4	11	8.2	33	316			
3880	2140	35.5	19.4	19.6	10.7	47	915			
5270	2645	48.2	34.5	24.2	17.3	60	915			
5630	3240	68.2	32.9	39.2	18.9	84	1473			
7800	4070	94.4	61.1	49.3	31.9	109	14/3			
8110	4750	171.2	56.8	100.3	33.3	169	2828			
11855	6200	250.2	116.5	130.8	60.9	231	2020			

Accessories and options

Plastic plugs


Plastic plugs can be used to close the rail attachment holes.

MINIRAIL	Plastic plugs	Plastic plugs can be combined with attaching screws of type								
Тур	Тур	DIN 912	DIN 7984	DIN 7380						
MN 7	MNK 4	-	-	Х						
MN 9	MNK 6	-	Х	Х						
MN 12	MNK 6	Х	Х	Х						
MN 15	MNK 6	Х	Х	X						
MN 14	MNK 6	-	X	Х						
MN 18	MNK 6	Х	Х	Х						
MN 24	MNK 8	-	Х	Х						
MN 42	MNK 8	-	Х	Х						

Multi-section rails (ZG)

Should the desired overall length of the rail exceed the maximum length specified in the brochure, some rails can be ground together. The offset between the individual guide rails does not exceed 0.002 mm. When assembling the guideways, the numbering at the junction must be observed.

Sizing and installation guidelines

Dynamic loading capacity C

The loading capacity values for anti-friction guideways are based on the principles specified by the ISO for calculation of rolling-contact bearings (DIN ISO 281).

Dynamic loading capacity is the loading which results in a nominal operational life corresponding to a translation distance of 100 000 m (100 km) provided that the loading due to mass and direction is unchanged and the line of influence acts vertically on the rolling-contact bearing unit.

Other suppliers often indicate their loading capacities for a translation distance of 50 000 m (50 km). These values according to JIS standard are above the values according to DIN ISO. The recalculation of the loading capacities ist done as follows:

$$C_{50} = 1.26 \cdot C_{100}$$

Operational life calculation

The nominal calculated operational life L for the equivalent force P and a dynamic loading capacity C is:

$$L = (C/P)^3 \cdot 10^5 \,\text{m}$$
 $L = \text{nominal life (m)}$

Operational life calculation in hours

$$L_{h} = \frac{L}{2 \cdot s \cdot n \cdot 60} = \frac{L}{60 \cdot v_{m}}$$

$$L_{h} = \text{nominal life (h)}$$

$$s = \text{stroke length (m)}$$

$$n = \text{stroke frequency (min-1)}$$

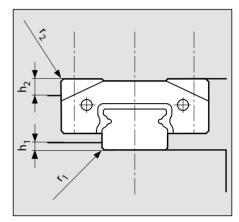
$$v_{m} = \text{average traversing speed (m/min)}$$

Tightening torques for rails and carriages

Tightening torques for fastening screws DIN 912, μ 0,125 (12,9) and DIN 912, μ 0,2 (A2-70)

Strengthclass	max. tight	max. tightening torques [Nm]			
	M2	M3	M4		
12.9	0.6	2.1	5.0		
A2-70	0.3	1.1	2.6		

Notes


When the screws are greased with grease containing MoS_2 the friction coefficient μ can be reduced by as much as half. As the tightening torques required to reach the maximum permissible tightening force depend on the friction coefficient, they must be reduced accordingly. The values can be obtained from the screw manufacturer's information or from the specialist literature. If necessary, carry out tests to determine the actual friction coefficient.

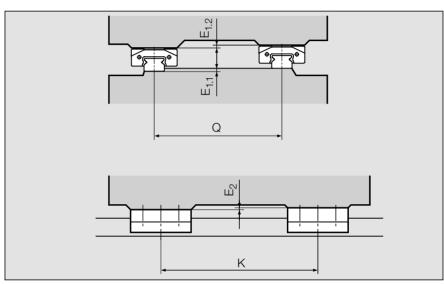
Refer to the screw manufacturer's information. This is always binding.

Configuration of the lateral locating sides

The corners between the support and locating surfaces of the surrounding structure are normally provided with a relief groove. However, if no relief groove is provided, then the dimensions tabulated below must be maintained.

Size	h ₁	r _{1 max}	r _{2 max}	h ₂	
7	1.2	0.2	0.3	2.5	
9	1.5	0.3	0.4	3	
12	2.5	0.4	0.4	4	
15	3.5	0.5	0.5	5	
14	1.8	0.2	0.4	2	
18	3	0.3	0.5	3	
24	3.5	0.4	0.5	4	
42	3.5	0.5	0.6	5	

Configuration of assembly surfaces


 $\mbox{MINIRAIL}$ advantages can only be achieved when mounted to a rigid, accurately machined structure.

A roughness average ratio of $\rm R_a$ 0.4 to 1.6 μm is recommended for support and locating surfaces.

Inaccuracies of the attachment surfaces are partially compensated by the elastic deformation of the MINIRAIL. However, they may affect overall accuracy, running behavior and operational life.

Geometrical and position accuracy of the support surfaces

Admissible height difference E₁ (use values in mm for the calculation)

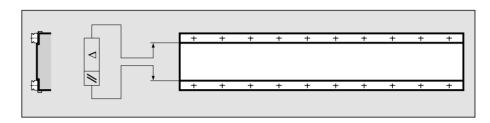
	Size	Preload	
	MNNS, MNN, MNNL, MNNXL	VO	V1
E1 = E1.1 + E1.2	7, 9, 12, 15	0.00025 Q	0.00015 Q
E1 = E1.1 + E1.2	14, 18, 24, 42	0.00013 Q	0.00008 Q
	MNNS	VO	V1
E2	7, 9, 12, 15	0.00010 K	0.00010 K
	MNN	VO	V1
E2	7, 9, 12, 15	0.00005 K	0.00005 K
E2	14, 18, 24, 42	0.00004 K	0.00004 K
	MNNL	VO	V1
E2	7, 9, 12, 15	0.00004 K	0.00004 K
E2	14, 18, 24, 42	0.00003 K	0.00003 K
	MNNXL	VO	V1
E2	7, 9, 12, 15	0.00003 K	0.00003 K

Example of calculation

Nominal: MNN 12

Type Preload class Gap Q 120 mm

Target: Admissible height difference E_1


 $0.00015 \times 120 \text{ mm} = \underline{0.018 \text{ mm}}$ Calculation:

The difference of $E_{1.1}$ plus $E_{1.2}$ (= E_1) must not exceed 0.0180 mm. Result:

Parallelism tolerances of the locating surfaces

Permissible tolerances for the parallelism

Tolerances for preload class (mm)					
7 / 14 9 / 18 12 / 24 15 / 42					
V0	0.003	0.005	0.008	0.01	
V1	0.002	0.003	0.004	0.005	

Mounting instructions

The installation of the MINIRAIL guideways is described in detail in the separate **Mounting Instructions MINIRAIL** and can be downloaded from **www.schneeberger.com** at menu DOWNLOADS.

As delivered condition

MINIRAIL are delivered in protective packaging. The carriages are mounted on a plastic rail and slightly oiled for immediate operation.

Transportation and intermediate storage

MINIRAIL are highly precise components, which have to be treated with care. As a protection against damage, the following instructions should be followed:

- Always store and transport MINIRAIL in their original packaging.
- Protect the guideways against impacts and dampness/humidity.

The MINIRAIL carriage and rail must be ordered as separate items.

		Ordering example:	 MNN	12	-G3
Carriage					
Quantity					
Carriage type	MNNS**, MNN, MNNL, MNNXL**				
Size	7, 9, 12, 15, 14, 18, 24, 42				
Accuracy class	G1, G3				•

^{**} Not available for sizes 14, 18, 24 and 42

	Ordering example: MN 9 -155 -7.5 -7.	-G1	-V1	-ZG
Rail				
Quantity				
Rail type	MN			
Size	7, 9, 12, 15, 14, 18, 24, 42			
Rail length	L ₃ (in mm)			
Starting hole pitch	L ₅ (in mm)*			
End hole pitch	L₁₀ (in mm)*			
Accuracy class	G1, G3	_		
Preload class	V0, V1		_	
Multi-part rails	ZG			

^{*} Indicate only if special pitch

Accessories

		Ordering example:	 MNW
Re-lubrication set			
Quantity			
Туре	MNW		

		Ordering example: _	_ MNK	6
Plastic plugs				
Quantity	_			
Туре	MNK			1
Size	4, 6, 8			